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Abstract

Documentation of admittance measurements application and algorithm.

1 Admittance measurements

We have made admittance measurements in the Debuncher and Accumulator using scraper
scans for years. The practice has been to make a fast time plot of a loss monitor and spectrum
analyzer video out versus scraper position. A determination of the touch point (from where the
loss monitor ’takes off’) and the extinction point (where the video out ’flat lines’) is done and
then the distance is measured from these two points. There are lots of opportunities for personal
bias in defining the touch point and extinction point. An algorithm has been developed to take
out the human element.

The algorithm looks for the point of maximum curvature of the loss monitor count vs scraper
position to define the touch point and similarly for the video out vs scraper position for the
extinction point. A smoothing algorithm is included to take out noise in the sampling. It was
developed by Andrey Gvozdev during the summer of 2005 under guidance from Keith Gollwitzer,
Steve Werkema, and Paul Derwent.

The curvature of a function y is defined as

ρ =
|y′′|

(1 + (y′)2)
3
2

(1)

However, if we let y go to 3y, the maximum of the curvature is in a different place. Andrey
realized that using (a2 +(y′)2)

3
2 , where a is the norm (the maximum of y′) of the function y will

preserve the position of the maximum curvature to changes in normalization (e.g., changes in
beam intensity). y is derived from the data by a regularization algorithm. This algorithm does
smooth out large scale deviations (e.g., hiccups in the data taking process). A full description
of the mathematics of the algorithm is included as an appendix to this note. This algorithm
has been implemented in a Java application available on the APPIX P page.

2 Data taking and application

Rather than using fast time plots, the scraper position, loss monitor counts, and spectrum
analyzer video out devices are logged in a lumberjack sampling at 15 Hz. By knowing when the
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Plane Loss Monitor Touch Point Range Extinction Point Range
Debuncher Horizontal D:LM3Q5 25 - 35 mm 10 - 16 mm
Debuncher Vertical D:LM3Q8 12 - 22 mm 0 - 6 mm

Accumulator Horizontal A:LM4Q1 15 - 25 mm 3 - 9 mm
Accumulator Vertical A:LM306 10 - 16 mm -5 - 1 mm

Table 1: Defaults used in Java application.

scraper scan is complete, we can pull the data out of the lumberjack and implement the touch
and extinction point algorithm. The application uses default loss monitors and ranges for the
touch point and extinction point (see table 1), taking 3 minutes of data from the data logger.
A sample of the data and the identified touch and extinction points are shown in figure 1.

The regularization algorithm does impart a bias in the calculation of the extinction point.
As there is a discontinuity where the power above the noise floor goes to zero and the video out
’flat lines’, the algorithm smooths out this discontinuity over 200 µ, thus biasing the extinction
point slightly to the left (on the scale of 100 µ).
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Figure 1: Aperture scan for the Debuncher vertical position taken December 10th. The touch and
extinction points are listed in the legend. The admittance is the square of the difference divided
by the value of the β function at the scraper.
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TouchPoint is a module written on C++ for touch point definition from scraper's scans.

Short description of methods and variables using in TouchPoint.h

Public methods:

setData(vector<double>& xNew, vector<double>& yNew) or void SetData(string fName)
Input data from out source. First way is using two vectors. Second is reading data from file. In 

the file there should be two coloumns: x-data  and y-data correspondingly.

void Run()
This function is used for running methods described below. It should be run after SetData. This 

function processes two vectors. Firstly, it sort data (MSort). Secondly, it throw away erroneous and 
seriate  points  (Mthrew).  After  this  it  reduce  data  to  a  constant  x  step  (EqStep).  Then  it 
differenciate function (Mdiff) and, at the end, calculate CURV and TP.

void Run1()
void Run1ad(double NORM)
This two functions together mostly do the same that Run, but instead of automatically NORM 

calculation  in  MCalc you  can  set  it  by  hand  or  calculate  it  in  another  way,  looking  at  first 
derivative.

Private methods:

SLUSolve (DMatr& M, vector<double>&  res)
This function is used for solving system of linear equations Q*X = F by Gauss method. It takes 

matrix M with dimensions NxN+1 as a parameter , where N is a number of equations. First N 
columns are the matrix of the system (Q), and the last one is a right part. After calculations function 
write the result to vector res.

PolyC(vector<double>& x, vector<double>& y, int n, vector<double>& PCoeff)
This function is used for calculating cofficients of the approximation polynom by method of 

least  squares.  Let  write  a  functional =∑
xi
[ y i− f x i]

2
,  where 

f x =a0a1 xa2 x
2...an x

n - polynom with unknown coefficients a i . If polynom is not 
far  from our points,  then   is small,  and vice versa.  For   minimization let  put  to  zero 

derivatives
d
da i

=0 .  Thus  we  can  get  linear  system  of  equations  with  respect  to  a i : 

M×A=F ,  where M kl=∑
i
x i
kl−2

, Fk=∑
i
y i x i

k−1
,  A  –  coefficients  vector.  (x,y) are 

points to be approximated, n is a power of the polynom and PCoeff is a resulting vector A.

void MSort(vector<double>& x, vector<double>& y)
This function is just a sorting by method of fon Neuman. It sorts array (x,y) with respect to x.



void PThrew(vector<double>& x, vector<double>& y)
This function is used for throwing away erroneous seriate points. Firstly, we can do several 

measurments in the same position. In  this case we leave only one x-element with this value of 
position and write to the corresponding y the average value. Secondly, several points could be an 
error of the experiment. Most of all points lies on the smooth line. However some point could be far 
from its neighbours. In this way we suppose that it  is an error and throw it away. For this we 
inscribe our curve to the square in order to achive the equivalent axis. Then we take the left point, 
write it into the new array and find the next point, which is the nearest to our one. This point we 
also write to the idem array and so on.

Thus, if the point is the experemental's fault (i.e. if the distance between its neighbours is less 
than distance to the neighbour) then it will be skipped.

void EqStep(vector<double>& x, vector<double>& y, double Env, double h)
In most numerical methods it is more simply to work when distance between points is constant. 

This function takes the old array (x,y) and builds the new one with constant step h. The first new x 
point is x[0]+Env, the next is x[0]+Env+h and so on, until the distance to the x[N] is less than Env. 
For calculating y[i] we calculate parabola which is the best approximation for all old points in [x[i]-
Env;x[i]+Env], and then  compute its value in x[i]. Thus we have new array (x,y) with a constant 
step by x, and at the same time get some smoothing. 

Parameters: (x,y) – array for calculation, h – step in the new array, Env – neighborhood of the 
point for parabola calculation.

 void MDiff(vector<double>& x, vector<double>& y, vector<double>& FDiff, 
vector<double>& SDiff,double alpha1, double alpha2)

This function is used for calculation the first and the second derivatives. If the function is known 
from measurments, there are some random errors. So if we begin to calculate derivative by the 
nearest points, we can get great deviation. So we have to find some regularization algorithm for 
differenciation. One way to solve this problem is to get integal equation from differencial one:

 U= f '∫
a

b ∫
t

b

U d − f b f t 
2 

dt=0

If  U is a solution of the left equation, it also minimized a functional written on the right. But we 
want to get a stable solution with respect to the small deviation of f. So we can add item to the 
functional, which will be responsible for the sleekness of the derivative:

 ∫
a

b

 x2 dt∫
a

b [U 2t  dU t 
dt 

2 ]dt=min
where  - is a regularization parameter, and  x=∫

t

b

U d − f b f t  - discrepancy, 

which will be achieved after substitution of our function to the initial equation. After that we apply 
numerical integration and differenciation. To do this let calculate ∫U ' 2 dt using formula of 
average, on the same time replace differenciation by difference:

∫
ti

ti1

dUdt 
2 

dt≈
U i1−U i 

2

h
Other integrals we calculate using trapezium rule: 

∫U 2 dt=h∑
i=0 

N

ciU i
2 U i=U t i

 x t i=h∑
m=0 

N

BimU m− f N f i



∫ x t 2 dt=h∑
i=0 

N

c i x i
2

where introduced following table of symbols:

Bi m =
1/ 2 if m=1 оr m=N

1 if m i m≠N
0 else

c i = 1/2 if i=1 оr i=N
1 else

x i =x0i−1∗h
Coolecting all together we will achieve following expression:

=h∑
i=0 

N

cm[ x i ]
2 h∑

i=1 

N

ciU i
2 


2h∑i=0 

N

U i1−U i=min

For the functional minimization let equate to zero its derivatives. Thus we get linear system of 
equations with respect to U i :

d
dU i

=2 h ciU iU iF i ∑
m=0to

NQim=0

where introduced following table of symbols:
x i1−xi = const ∀ i

F i=2h∑
l=0 

N

c l Bli  f l− f N 

Qim=2h
2 ∑
k=0 

N

ck Bki Bkm

Solving this system of equations we can get f derivative. Using this method two times we can 
get second derivative.

As  a  parameter  this  procedure  gets  the  function,  which  we  want  to  diffirinciate  (x,y)  with 
constant  interval  between points  ( x i1−xi = const ∀ i ),  regularization parameters  alpha1 
and alpha2 for the first and the second derivatives correspondingly, and returns two vectors FDIFF 
and SDIFF.

 void MCalc()
It was assumed that curvature of scraper's data has minimum in touch point. Curvature is given 

by following expression:

CU=
∣y ' '∣

1y ' 2
3 
2

But this function doesn't have maximum in the same place for y and const*y. Therefore better 
value is:

C= ∣y ' '∣

a2y ' 2 
3 
2

Where  a  is  a  function's  norm.  As  the  norm  was  chosen  maximum of  the  first  derivative: 
a=max [−∞;∞]y '  . Physical meaning of this norm is maximum of the beam's envelope. Since 

data can be without maximum on the first derivative, we should use extrapolation to find it. We 
suppose that Gauss function with ≈10 mm  is a good approximation for the beam's envelope. 
So we can find our maximum.

Then using class variables FDIFF, SDIFF and X we calculate function C and write it into the 
CURV. CURV's maximum is in the MTP.



Variables
(X,Y) – set of points
(X,FDIFF) -  first derivative of (X,Y)
(X,SDIFF) – second derivative
(X,CURV) – C from MCalc

Features
There  must be at least 3 points in input data at every 

2*ENV interval (ENV declaration see at EqStep).
Gauss extrapolation in MCalc doesn'n work well, so 

bigger error can appeared when there is no maximum in 
first  derivative.In  this  case  better  precition  can  be 
achieved if   NORM  in  MCalc is setted by hand. But 
anyway TP has small dependence from NORM. 

Also,  sometimes  there  are  several  maximum  at 
graphic as shown at fig.2. But we need to find only left 
one. So sometimes it is better to look at graphics. So this 
programm is not really automatized .

If the beam has the gaussian distribution, then MTP 
is a point which bound 99% of gauss's area (fig.1)

At fig. 2 shown result of function's calculations. We 
can see that C-graphic has well defined maximum. MTP 
bounds 99.5% of beam's square. At fig.3 shown another 
example.  Cause  there  is  no  second  edge  we  can  not 
calculate what area is bounded. But mostly picture look 
like fig.2. 
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TouchPoint is a module written on C++ for touch point definition from scraper's scans.


Short description of methods and variables using in TouchPoint.h


Public methods:


setData(vector<double>& xNew, vector<double>& yNew) or void SetData(string fName)
Input data from out source. First way is using two vectors. Second is reading data from file. In 


the file there should be two coloumns: x-data  and y-data correspondingly.


void Run()
This function is used for running methods described below. It should be run after SetData. This 


function processes two vectors. Firstly, it sort data (MSort). Secondly, it throw away erroneous and 
seriate  points  (Mthrew).  After  this  it  reduce  data  to  a  constant  x  step  (EqStep).  Then  it 
differenciate function (Mdiff) and, at the end, calculate CURV and TP.


void Run1()
void Run1ad(double NORM)
This two functions together mostly do the same that Run, but instead of automatically NORM 


calculation  in  MCalc you  can  set  it  by  hand  or  calculate  it  in  another  way,  looking  at  first 
derivative.


Private methods:


SLUSolve (DMatr& M, vector<double>&  res)
This function is used for solving system of linear equations Q*X = F by Gauss method. It takes 


matrix M with dimensions NxN+1 as a parameter , where N is a number of equations. First N 
columns are the matrix of the system (Q), and the last one is a right part. After calculations function 
write the result to vector res.


PolyC(vector<double>& x, vector<double>& y, int n, vector<double>& PCoeff)
This function is used for calculating cofficients of the approximation polynom by method of 


least  squares.  Let  write  a  functional =∑
xi
[ y i− f x i]


2
,  where 


f x =a0a1 xa2 x
2...an x


n - polynom with unknown coefficients a i . If polynom is not 
far  from our points,  then   is small,  and vice versa.  For   minimization let  put  to  zero 


derivatives
d
da i


=0 .  Thus  we  can  get  linear  system  of  equations  with  respect  to  a i : 


M×A=F ,  where M kl=∑
i
x i
kl−2


, Fk=∑
i
y i x i


k−1
,  A  –  coefficients  vector.  (x,y) are 


points to be approximated, n is a power of the polynom and PCoeff is a resulting vector A.


void MSort(vector<double>& x, vector<double>& y)
This function is just a sorting by method of fon Neuman. It sorts array (x,y) with respect to x.







void PThrew(vector<double>& x, vector<double>& y)
This function is used for throwing away erroneous seriate points. Firstly, we can do several 


measurments in the same position. In  this case we leave only one x-element with this value of 
position and write to the corresponding y the average value. Secondly, several points could be an 
error of the experiment. Most of all points lies on the smooth line. However some point could be far 
from its neighbours. In this way we suppose that it  is an error and throw it away. For this we 
inscribe our curve to the square in order to achive the equivalent axis. Then we take the left point, 
write it into the new array and find the next point, which is the nearest to our one. This point we 
also write to the idem array and so on.


Thus, if the point is the experemental's fault (i.e. if the distance between its neighbours is less 
than distance to the neighbour) then it will be skipped.


void EqStep(vector<double>& x, vector<double>& y, double Env, double h)
In most numerical methods it is more simply to work when distance between points is constant. 


This function takes the old array (x,y) and builds the new one with constant step h. The first new x 
point is x[0]+Env, the next is x[0]+Env+h and so on, until the distance to the x[N] is less than Env. 
For calculating y[i] we calculate parabola which is the best approximation for all old points in [x[i]-
Env;x[i]+Env], and then  compute its value in x[i]. Thus we have new array (x,y) with a constant 
step by x, and at the same time get some smoothing. 


Parameters: (x,y) – array for calculation, h – step in the new array, Env – neighborhood of the 
point for parabola calculation.


 void MDiff(vector<double>& x, vector<double>& y, vector<double>& FDiff, 
vector<double>& SDiff,double alpha1, double alpha2)


This function is used for calculation the first and the second derivatives. If the function is known 
from measurments, there are some random errors. So if we begin to calculate derivative by the 
nearest points, we can get great deviation. So we have to find some regularization algorithm for 
differenciation. One way to solve this problem is to get integal equation from differencial one:


 U= f '∫
a


b ∫
t


b


U d − f b f t 
2 


dt=0


If  U is a solution of the left equation, it also minimized a functional written on the right. But we 
want to get a stable solution with respect to the small deviation of f. So we can add item to the 
functional, which will be responsible for the sleekness of the derivative:


 ∫
a


b


 x2 dt∫
a


b [U 2t  dU t 
dt 


2 ]dt=min
where  - is a regularization parameter, and  x=∫


t


b


U d − f b f t  - discrepancy, 


which will be achieved after substitution of our function to the initial equation. After that we apply 
numerical integration and differenciation. To do this let calculate ∫U ' 2 dt using formula of 
average, on the same time replace differenciation by difference:


∫
ti


ti1


dUdt 
2 


dt≈
U i1−U i 


2


h
Other integrals we calculate using trapezium rule: 


∫U 2 dt=h∑
i=0 


N


ciU i
2 U i=U t i


 x t i=h∑
m=0 


N


BimU m− f N f i
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where introduced following table of symbols:
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1/ 2 if m=1 оr m=N


1 if m i m≠N
0 else


c i = 1/2 if i=1 оr i=N
1 else
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Coolecting all together we will achieve following expression:


=h∑
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N


cm[ x i ]
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N


ciU i
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2h∑i=0 


N


U i1−U i=min


For the functional minimization let equate to zero its derivatives. Thus we get linear system of 
equations with respect to U i :


d
dU i


=2 h ciU iU iF i ∑
m=0to


NQim=0


where introduced following table of symbols:
x i1−xi = const ∀ i


F i=2h∑
l=0 


N


c l Bli  f l− f N 


Qim=2h
2 ∑
k=0 


N


ck Bki Bkm


Solving this system of equations we can get f derivative. Using this method two times we can 
get second derivative.


As  a  parameter  this  procedure  gets  the  function,  which  we  want  to  diffirinciate  (x,y)  with 
constant  interval  between points  ( x i1−xi = const ∀ i ),  regularization parameters  alpha1 
and alpha2 for the first and the second derivatives correspondingly, and returns two vectors FDIFF 
and SDIFF.


 void MCalc()
It was assumed that curvature of scraper's data has minimum in touch point. Curvature is given 


by following expression:


CU=
∣y ' '∣


1y ' 2
3 
2


But this function doesn't have maximum in the same place for y and const*y. Therefore better 
value is:


C= ∣y ' '∣


a2y ' 2 
3 
2


Where  a  is  a  function's  norm.  As  the  norm  was  chosen  maximum of  the  first  derivative: 
a=max [−∞;∞]y '  . Physical meaning of this norm is maximum of the beam's envelope. Since 


data can be without maximum on the first derivative, we should use extrapolation to find it. We 
suppose that Gauss function with ≈10 mm  is a good approximation for the beam's envelope. 
So we can find our maximum.


Then using class variables FDIFF, SDIFF and X we calculate function C and write it into the 
CURV. CURV's maximum is in the MTP.







Variables
(X,Y) – set of points
(X,FDIFF) -  first derivative of (X,Y)
(X,SDIFF) – second derivative
(X,CURV) – C from MCalc
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There  must be at least 3 points in input data at every 
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Gauss extrapolation in MCalc doesn'n work well, so 


bigger error can appeared when there is no maximum in 
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Also,  sometimes  there  are  several  maximum  at 
graphic as shown at fig.2. But we need to find only left 
one. So sometimes it is better to look at graphics. So this 
programm is not really automatized .


If the beam has the gaussian distribution, then MTP 
is a point which bound 99% of gauss's area (fig.1)


At fig. 2 shown result of function's calculations. We 
can see that C-graphic has well defined maximum. MTP 
bounds 99.5% of beam's square. At fig.3 shown another 
example.  Cause  there  is  no  second  edge  we  can  not 
calculate what area is bounded. But mostly picture look 
like fig.2. 





